Modal Logic

Submitted to Prof . Lubomír Popelínský, Masaryk University

Prepared by master student Abdullah Alshbatat

- * Introduction
- * Kripke's Formulation of Modal Logic
- * Frames and Forcing
- * Modal Tableaux
- * Soundness and completeness
- * Modal Axioms and special Accessibility Relations

Introduction

Modal Logic:

- Is the study of modal propositions and the logical relationships that they bear to one another. The most well-known are propositions about what is necessarily the case and what is possibly the case.
- Is an extension of classical propositional or predicate logic.
- Make precise the properties of possibility, necessity, belief, knowledge.
- Studies reasoning that involves the use of the expressions 'necessarily' and 'possibly'.

 $\Box \varphi$ "it is necessary that φ ", " φ will always be true"

 $\Diamond \varphi$ " it is possible that φ " , " φ will eventually be true "

IA008 Computational Logic

Syntax:

Definition : A modal language \mathcal{L} consists of the following disjoint sets of distinct primitive symbols:

- 1. Variables: x, y, z, v, $x_0, x_1, ..., y_0, y_1, ..., (an infinite set).$
- 2. Constants: c, d, c_0 , d_0 , ... (any set of them).
- 3. Connectives: \land , \neg , \lor , \rightarrow , \leftrightarrow .
- 4. **Quantifiers**: \forall , \exists .
- 5. **Predicate symbols**: P,Q,R,P₁,P₂,...
- 6. Function symbols: f, g, h, f_0 , f_1 , f_2 ,..., g_2 ,...
- 7.**Basic operator** : \Box , \diamondsuit .

8. Punctuation : the comma, and the (right and left) parentheses), (.

Definition : Formulas.

- 1. Every atomic formula is a formula.
- 2. If α , β are formulas, then so are $(\alpha \land \beta)$, $(\alpha \rightarrow \beta)$, $(\alpha \leftrightarrow \beta)$, $(\neg \alpha)$, $(\alpha \lor \beta)$.
- 3. If ν is variable and α is formula, then ($(\exists \nu) \alpha$) and ($(\forall \nu) \alpha$) are also formulas.
- 4. If φ is a formula , then so are $(\Box \varphi)$ and $(\Diamond \varphi)$.

Definition :

- 1. A Subformula of a formula φ consecutive sequence of symbols from φ which itself formula.
- 2. An occurrence of a variable \boldsymbol{v} in a formula φ is **bound** if there is a subformula ψ of φ containing that occurrence of \boldsymbol{v} such that ψ begins with $((\exists \boldsymbol{v})(\forall \boldsymbol{v}))$. An occurrence of \boldsymbol{v} in φ is free if it is not bound.
- 3. A variable \boldsymbol{v} is said to occur free in $\boldsymbol{\varphi}$ if it has at least one free occurrence there.
- 4. A sentence of Modal logic is a formula with no free occurrences of any variable.
- 5. An open formula is a formula without quantifiers.

Kripke's Formulation of Modal Logic

- Kripke have been introduced as means of giving semantics to modal logic,
 (introduced a domain of possible worlds).
- We consider W is collection of possible worlds. Each world w∈ W constitutes a view of reality as represent by structure C(w) associated with it.
 Modal Kripke introduced an accessibility relation on the possible worlds and this accessibility relation played a role in the definition of truth for modal sentences.

- We write $w \Vdash \varphi$ to mean φ is true in the possible world w. ("read as w forces φ " or " φ is true at w".)

If φ is a sentence of classical language, φ is true in the structure C(w).

If \Box is interpreted as necessity, truth in all possible worlds.

If \diamondsuit is interpreted as possibility, truth in some possible worlds.

Frames and Forcing

Semantics:

Definition: Let $C = (W, S, \{C(p)\}_{p \in W})$, consist of a set W, a binary relation S on W and function that assigns to each p in W a (classical) structure C(p) for \mathcal{L} . We denote to the fact that the relation S holds between p and q as either pSq or $(p,q) \in S$.

We say C is frame for the language $\mathcal{L}(\mathcal{L}\text{-}frame)$ if for every p and q in W, pSq implies that $C(p) \subseteq C(q)$ and the interpretation of the constants in $\mathcal{L}(p) \subseteq \mathcal{L}(q)$ are the same in C(p) as in C(q).

Definition (Forcing for frames): Let $C = (W, S, \{C(p)\}_{p \in W})$ be a frame for language \mathcal{L} , p be in W, and φ be a sentence of the language $\mathcal{L}(p)$. We give a definition of p forces φ , $p \Vdash \varphi$ by induction on sentence φ . 1. For atomic sentence φ , $p \Vdash \varphi \Leftrightarrow \varphi$ is true in C(p). 2. $p \Vdash (\varphi \to \psi) \Leftrightarrow p \Vdash \varphi$ implies $p \Vdash \psi$. 3. $p \Vdash (\neg \varphi) \Leftrightarrow p \text{ does not force } \varphi \text{ (written) } p \Vdash \varphi$. 4. $p \Vdash ((\forall x) \varphi(x) \Leftrightarrow \text{ for every constant } c \text{ in } \mathcal{L}(p), p \Vdash \varphi(c).$ 5. $p \Vdash (\exists x) \varphi(x) \Leftrightarrow$ there is a constant $c \text{ in } \mathcal{L}(p)$ such that $p \Vdash \varphi(c)$. 6. $p \Vdash (\varphi \land \psi) \Leftrightarrow p \Vdash \varphi$ and $p \Vdash \psi$. 7. $p \Vdash (\varphi \lor \psi) \Leftrightarrow p \Vdash \varphi \text{ or } p \Vdash \psi$. $(\Box \varphi) \text{ and } (\diamondsuit \varphi)$. 8. $p \Vdash \Box \varphi \Leftrightarrow \text{for all } q \in W \text{ such that } pSq, q \Vdash \varphi$. 9. $p \Vdash \Diamond \varphi \Leftrightarrow$ there is a $q \in W$ such that $pSq, q \Vdash \varphi$. **Modal Logic**

IA008 Computational Logic

Definition : Let φ be a sentence of the language \mathcal{L} . We say that φ is forced in the *L*-frame *C*, $\Vdash_{\mathsf{C}} \varphi$, if every p in W forces φ , We say φ is **valid**. $\models \varphi$, if φ is forced in every *L*-frame.

Definition : Let Σ be a set of sentences in a modal language \mathcal{L} . and φ a single sentence of \mathcal{L} . φ is a **logical consequence** of Σ , $\Sigma \models \varphi$, if φ is forced in every \mathcal{L} frame C in which every $\psi \in \Sigma$ is forced.

Modal Tableaux

For Modal Logic we begin with a signed forcing assertion $T_p \Vdash \varphi$ or $F_p \Vdash \varphi$, to build either frame agreeing with the assertion or decide that any such attempt leads to a contradiction.

- begin with $F p \Vdash \varphi$; find either a frame in which p does not force φ or

decide that we have a modal proof of φ .

Definition: Modal tableaux and tableau proofs:

are labeled binary trees. The labels (called entries of the tableau) are now either signed forcing assertions (i.e., labels of the form $T_{p} \Vdash \varphi$ or $F_{p} \Vdash \varphi$ for φ a sentence of any given appropriate language) or accessibility assertions pS_q .

We read $T_{p \Vdash \varphi}$ as p forces φ and $F_{p \Vdash \varphi}$ as p does not forces φ .

Definition: (Atomics tableaux): We begin by fixing a modal language \mathcal{L} and an expansion to \mathcal{L}_{c} given by adding new constant symbols \mathbf{c}_{i} for $i \in \mathcal{N}$. In the tableaux, φ and ψ , if unquantified, are any sentences in the language \mathcal{L}_{c} . If quantified, they are formulas in which only \mathbf{x} is free.

Outline
Introduction
Kripke's Formulation of Modal Logic
Frames and Forcing
Modal Tableaux
Soundness and completeness
Modal Axioms and special Accessibility Relations

T p $\Vdash \varphi$ For any atomic sentence φ and any p	F p $\Vdash \varphi$ For any atomic sentence φ and any p	
$\begin{array}{cccc} T \lor & T p \Vdash \varphi \lor \psi \\ & \swarrow \\ & T p \Vdash \varphi & T p \Vdash \psi \end{array}$	F ∨ F p ⊩ $\varphi ∨ \psi$ F p ⊩ φ F p ⊩ φ F p ⊩ ψ	
$F \land \qquad F p \Vdash \varphi \land \psi$ $F p \Vdash \varphi \qquad F p \Vdash \psi$	Τ∨ Τρ⊩φ∧ψ Τρ⊩φ Ι Τρ⊩ψ	
$ \begin{array}{cccc} T \rightarrow & T p \Vdash \varphi \rightarrow \psi \\ & \swarrow & \swarrow \\ & F p \Vdash \varphi & T p \Vdash \psi \end{array} \end{array} $	$F \rightarrow F p \Vdash \varphi \rightarrow \psi$ $\downarrow T p \Vdash \varphi$ $F p \Vdash \psi$	

IA008 Computational Logic

Outline Introduction Kripke's Formulation of Modal Logic Frames and Forcing Modal Tableaux Soundness and completeness

Modal Axioms and special Accessibility Relations

Τ¬ Τp⊩¬φ		F¬ Fp⊩¬φ	
Fp⊩φ		Tp⊩φ	
T∃	F∃	T ∀	F ∀
Tp ⊩(∃x) $φ$ (x)	Fp ⊩(∃x) φ (x)	T p I⊢(∀ x) φ (x)	F p I⊢(∀ x) φ (x)
T p ⊩ $φ$ (c)	Fp ⊩ φ (c)	T p I⊢ φ (c)	F p I⊢ φ (c)
For some new c	For any appropriate c	For any appropriate c	For some new c
T □ T p I⊢ □ $φ$ T q I⊢ $φ$ For any appropriate q	F □ F p I⊢ □ φ pSq F q I⊢ φ For some new q	T T p I⊢ ϕ pSq T q I⊢ φ For some new q	T T p ⊩ ↓ T q ⊩ $φ$ For any appropriate q

IA008 Computational Logic

Definition: We fix a set $\{p_i \mid i \in \mathcal{N}\}$ of potential candidates for the *p*'s and *q*'s in our forcing assertions.

A *Modal tableau* (for \mathcal{L}) is a binary tree labeled with signed forcing assertions or accessibility assertions; both sorts of labels are called entries of the tableau. The class of modal tableaux (for \mathcal{L}) is defined inductively as follows.

1. Each atomic tableau τ is a tableau.

- in cases (T∃) and (F∀), *c* is new, means that *c* is on of the constants c_i added on to \mathcal{L} to get \mathcal{L}_c which does not appear in φ .
- in (F3) and (TV), any appropriate *c* , means that any constant in \mathcal{L} or φ .
- in cases (FD) and (T \diamondsuit), *q* is new; means that *q* is any of the *p_i* other than *p*.
- in (T \square) and (F \diamondsuit), any appropriate *q*, means that the tableau is just Tp $\Vdash \square \varphi$ or Fp $\Vdash \diamondsuit \varphi$ as there is no appropriate q.

IA008 Computational Logic

2. If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P and τ is obtained from τ by adjoining an atomic tableau with root entry E to τ at the end of the path P, then τ is also a tableau.

- c in (T3) and (F \forall), is on of the constants c_i that do not appear in any entry on τ .
- appropriate *c* in (F3) and (T \forall), any *c* in \mathcal{L} or appearing in an entry on P of the

form Tq $\Vdash \psi$ or Fq $\Vdash \psi$ such that qSp also appears on P.

- in (FD) and (T \diamondsuit), q is new; means that we choose a p_i not appearing in τ as q.
- in (T) and (F), appropriate q; means we can choose any q such that pSq is an entry on P.
- 3. If $\tau_0, \tau_1, ..., \tau_n, ...$ is a sequence of finite tableaux such that, for every $n \ge 0$, τ_{n+1} is constructed from τ_n by an application of 2, Then $\tau = U\tau_n$ is also a tableau.

Definition (Tableau Proofs): Let τ be a modal tableau and P a path in τ .

- 1) P is contradictory if, for some forcing assertion $p \Vdash \varphi$, both T $p \Vdash \varphi$ and F $p \Vdash \varphi$ appear as entries on P.
- 2) τ is **contradictory** if every path through τ is contradictory.
- 3) τ is a **proof** of φ if τ is finite contradictory modal tableau with its root node labeled F p $\Vdash \varphi$ for some p. φ is provable, $\vdash \varphi$ if there is a proof of φ .

* If there is any contradictory tableau with root node F $p \Vdash \varphi$, then there is one that is finite, i.e., a proof of φ : just terminate each path when it becomes contradictory.

* When construct proofs, Mark any contradictory path with the symbol \otimes and terminate the development of the tableau along that path.

Example 1: $\varphi \rightarrow \Box \varphi$

1	$F \le F \lor \varphi \to \varphi$	$\exists \varphi$		1
2	 Τ w ⊩ φ		by 1	2
3	Fw⊩□φ ∣		by 1	3
4	wSv	for a new v	by 3	
5	Γv⊩φ		by 3	T W S
This faile	d attemnt at a pro	of suggests a	frame	
counterex	amples C for whi	ch W= $\{w,v\}$,		V
$S = \{(w,v)\}$	$\{, \varphi \text{ is true at w}\}$	but not at v.		tc

Example 2: $\Box \phi \rightarrow \phi$

The frame counterexamples consists of a one world W={w} with empty accessibility relation S and φ false at w. $\Box \varphi \rightarrow \varphi$ is not valid.

Various interpretations of \Box might tempt one to think that $\Box \varphi \rightarrow \varphi$ should be valid, Why?

IA008 Computational Logic

 $\varphi \rightarrow \Box \varphi$ is not valid.

Example 3: \Box (\forall x) φ ($_{X}$) \rightarrow (\forall x) \Box φ ($_{X}$)

-		
1	$F \le H \square (\forall \mathbf{x}) \varphi(\mathbf{x}) \rightarrow (\forall \mathbf{x}) \square \varphi(\mathbf{x})$	
2	T w ⊩□ $(\forall x) φ(x)$	by 1
3	$F \le H (\forall x) \Box \varphi (x)$	by 1
4	$F \le \vdash \Box \varphi(c)$	by 3
5	wSv	by 4
6	$F v \Vdash \varphi(c)$	by 4
7	T v ⊩ (∀ x) $φ$ (x)	by 2, 5
8	T v ⊩ φ (c)	by 7
	\otimes	by 6, 8

IA008 Computational Logic

1

2

3

4

5

6

7

8

9

10

Example 4: $(\forall x) \neg \Box \varphi \rightarrow \neg \Box (\exists x) \varphi$

- The frame counterexample consists of world $W=\{w,v\}$, $S=\{(w,v)\}$, constant domain C = $\{c, d\}$; and no atomic sentence true at w and φ (d) true at v.

- $(\forall \mathbf{x}) \neg \Box \varphi \rightarrow \neg \Box (\exists \mathbf{x}) \varphi$ is not valid.

Definition (Modal tableaux from Σ): a set of sentence of a modal language called premises, the same modal tableaux except that we allow one additional formation rule:

- If τ is finite tableau from $\Sigma, \varphi \in \Sigma$, P a path in τ and p a possible world appearing in some signed forcing assertion on P, then appending T $p \Vdash \varphi$.

We write $\Sigma \vdash \varphi$ to denote that φ is provable from Σ .

Example : tableau proof of $\Box \forall \mathbf{x} \varphi(\mathbf{x})$ from the premise $\forall \mathbf{x} \varphi(\mathbf{x})$.

1	$F p \Vdash \Box (∀ x) φ (x)$	
2	pSq	by 1
3	Fq⊩(∀x)φ(x)	by 1
4	F q ⊩ φ (c)	new c by 3
5	Τq ⊩ (∀ x) φ (x)	premise
6	Τq ⊩ φ(c)	by 5
	\otimes	

IA008 Computational Logic

Soundness and completeness

- * Our goal here is to show that in modal logic provability implies validity.
- * In modal logic we must define a set W of possible world and, for each $p \in W$, a structure based on constants occurring on the path.
- * W will consist of the p's occurring in signed forcing assertions along the path.
- * The accessibility relation on W will then be defined by the assertions pSq occurring on the path.

Definition: suppose C = (V, T, C(p)) is a frame for a modal language \mathcal{L} , τ is a tableau whose root is labeled with a forcing assertion about a sentence φ of \mathcal{L} and P is a path through τ .

W set of p's appearing in forcing assertions on P and S the accessibility relation on W determined by the assertions pSq occurring on P.

We say that C agrees with P if there are maps f and g such that:

1. *f* is a map from W into V that preserve the accessibility relation, i.e., $pSq \Rightarrow f(p) T f(q).$

2. g sends each constant c occurring in any sentence ψ of a forcing assertion $\mathbb{T} p \Vdash \psi$ or $\mathbb{F} p \Vdash \psi$ on P to a constant in $\mathcal{L}(f(p))$. g is the identity on constants of \mathcal{L} . also extend g to be a map on formulas in the obvious way: To get $g(\psi)$ replace every constant c in ψ by g(c).

3. If $T_p \Vdash \psi$ is on P, then f(p) forces $g(\psi)$ in C and if $F_p \Vdash \psi$ is on P then f(p) does not force $g(\psi)$ in C.

Theorem : suppose C = (V, T, C(p)) is a frame for a modal language \mathcal{L} , and τ is a tableau whose root is labeled with a forcing assertion about a sentence φ of \mathcal{L} . if $q \in V$ and either

1. Fr $\Vdash \varphi$ is the root of et of τ and q does not force φ in C.

Or

2. Trill φ is the root of et of τ and q does force φ in C.

Then there is a path P through τ that agrees with C with a witness function f that sends r to q.

Theorem : (Soundness, $\vdash \varphi \Rightarrow \vdash \varphi$) If there is a (modal) tableau proof of a sentence φ (of a modal logic), then φ is (modally) valid.

Theorem : (Completeness, $\models \varphi \Rightarrow \vdash \varphi$) If a sentence φ of modal logic is valid (in the frame semantics), then it has a (modal)tableau proof.

Theorem (Soundness, $\Sigma \vdash \varphi \Rightarrow \Sigma \models \varphi$) If there is a (modal) tableau proof of φ from a set Σ of sentences, then φ is logical consequence of Σ .

Theorem (Completeness, $\Sigma \models \varphi \Rightarrow \Sigma \vdash \varphi$) If φ is logical consequence of a set Σ of sentences of modal logic, then there is a modal tableau proof of φ from Σ .

Modal Axioms and special Accessibility Relations

- Some particular intended interpretation of modal operator might suggest axioms that one might wish to add to modal logic.

Example: if \Box means "it is necessarily true that" or "I know that" one might want

to include an axiom scheme asserting $\Box \varphi \rightarrow \varphi$ for every sentence φ .

but if \Box intended to mean "I believe that", then we might well reject $\Box \varphi \rightarrow \varphi$ as an axiom: I can have false beliefs.

- There are close connections between certain natural restriction on the accessibility relation in frames and various common axioms for modal logic.

- It is possible to formulate precise equivalents (the sentences forced in all frames with specified type of accessibility relation are precisely the logical consequences of some axiom system).

Definition :

1. Let \mathcal{F} be a class of frames and φ a sentence of modal language \mathcal{L} . We say that φ is \mathcal{F} -valid, $\models_{\mathcal{F}} \varphi$, if φ is forced in every frame $C \in \mathcal{F}$.

2. Let F be a rule or a family of rules for developing tableaux, The F- tableaux extended to include the formation rules in F. As well as F-tableau is proof of sentence φ if it is finite, has a root node of the form $F_P \Vdash \varphi$ and every path is contradictory. We say that φ is F-provable, $\vdash_F \varphi$, if it has an F-tableau proof. **Definition**:

1. \mathcal{R} is the class of all **reflexive frames**, i.e., all frames in which the accessibility relation is reflexive (wSw holds for every $w \in W$).

2. R is the **reflexive tableau development rule** that says that, given a tableau τ , we may form a new tableau τ' by adding wSw to the end of any path P in τ on which w occurs.

3. T is the set of universal closures of all instances of the scheme $T: \Box \varphi \rightarrow \varphi$.

Theorem : For any sentence φ of our modal language \mathcal{L} , the following conditions are equivalent:

1.
$$\mathcal{T} \models \varphi$$
, φ is a logical consequence of \mathcal{T} .

- 2. $\mathcal{T} \models \varphi$, φ is a tableau provable from \mathcal{T} .
- 3. $\models_{\mathcal{R}} \varphi$, φ is forced in every reflexive *L*-frame.

4. $\vdash_{\mathcal{R}} \varphi, \varphi$ is provable with the reflexive tableau development rule. Lemma :

1. if T $p \Vdash \Box \psi$ appear on P and pS'q, Then T $q \Vdash \psi$ appears on P.

2. if $F_p \Vdash \Diamond \psi$ appear on P and pS'q, Then $F_q \Vdash \psi$ appears on P.

IA008 Computational Logic

Example : (Introspection and Transitivity): the scheme PI, $\Box \varphi$ $\rightarrow \Box \Box \varphi$. It is called the scheme of positive introspection as it expresses the view that *what I believe*, *I believe I believe*.

There is no contradictory. By reading off the true atomic statement from the tableaux, we get a three-world frame C= (W, S, C(p)). With W={w, v, u}, S= { (v, u),(w,v) }, C(v) \models φ and C(u), C(w) $\not\models \varphi$.

$F \le H \square \varphi \to \square \square \varphi$	
Γw⊩□φ	by 1
Γw⊩□□φ Ι	by 1
wSv new v	by 3
$F v \vdash \Box \varphi$	by 3
vSu new u	by 5
Γu⊩φ	by 5
Γv⊩φ	by 2, 4

Modal Logic

1

2

3

4

5

6

7

8

IA008 Computational Logic

Definition :

1. $T\mathcal{R}$ is the class of all **transitive frames**, i.e., all frames C=(W,S,C(*p*)) in which S is transitive: wSv \land vSu \Rightarrow wSu.

2. TR is the **transitive tableau development rule** that says that if wSv and vSu appear on a path P of tableau τ , then we can produce another tableau τ' by appending wSu to the end of P.

Theorem: For any sentence φ of our modal language \mathcal{L} , the following conditions are equivalent:

- 1. $\mathcal{P}I \models \varphi$, φ is a logical consequence of $\mathcal{P}I$.
- 2. $\mathcal{PI} \models \varphi$, φ is a tableau provable from \mathcal{PI} .
- 3. $\models_{TR} \varphi$, φ is forced in every transitive *L*-frame.

4. $\vdash_{\mathrm{TR}} \varphi$, φ is provable with the transitive tableau development rule.

Definition:

1.*E* is the class of all **Euclidean frames**, i.e., all frames C=(W,S,C(p)) in which S is **Euclidean** : $wSv \land wSu \Rightarrow uSv$.

2. E is the Euclidean tableau development rule which says that if wSv and wSu appear on a path P of tableau τ , then we can produce another tableau τ' by appending uSv to the end of P.

3. *NI* is the set of all universal closures of instances of the scheme NI: $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$.

Theorem : For any sentence φ of our modal language \mathcal{L} , the following conditions are equivalent:

- 1. $NI \models \varphi, \varphi$ is a logical consequence of NI.
- 2. $NI \vdash \varphi$, φ is a tableau provable from NI.
- 3. $\models_{\mathcal{E}} \varphi$, φ is forced in every Euclidean *L*-frame.
- 4. $\vdash_{\rm E} \varphi$, φ is provable with the Euclidean tableau development rule.

Definition:

1.*SE* is the class of all **serial frames**, i.e., all frames C=(W,S,C(p)) in which there is, for every $p \in W$, a *q* such that pSq.

2. SE is the **serial tableau development rule** which says that if p appear on a path P of tableau τ , then we can produce another tableau τ' by appending pSq to the end of P for a new q.

3. \mathcal{D} is the set of all universal closures of instances of the scheme D: $\Box \varphi \rightarrow \neg \Box \varphi$.

Theorem: For any sentence φ of our modal language \mathcal{L} , the following conditions are equivalent:

- 1. $\mathcal{D} \models \varphi$, φ is a logical consequence of \mathcal{D} .
- 2. $\mathcal{D} \models \varphi$, φ is a tableau provable from \mathcal{D} .
- 3. $\models_{se} \varphi$, φ is forced in every serial *L*-frame.
- 4. $\vdash_{SE} \varphi$, φ is provable with the serial tableau development rule.

IA008 Computational Logic

References

"Logic for Applications" Second Edition. Anil Nerode And Richard A. Shore.

Basic Concepts in Modal Logic. Edward N. Zalta. Center for the Study of Language and Information / Stanford University.